Tuterar
al
Cassich tex follenizg "toprofess" on \mathbb{R}

$$
J_{r}=\{(a, \infty) \mid a \in \mathbb{R}\} \cup\{\phi\} \cup\{\mathbb{R}\}
$$

Prove thes is a topobless and gind a basto
(1) $\varnothing \in J_{\nu} \quad \mathbb{R} \in J_{\mu}$
(2) Aolitixts Unions of rays ce rays $\mathbb{R}_{a}=(a, \infty)$

Let $I \leq p r$
Is $\bigcup_{a \in I} R_{a}$ a rayg?
Yes $\bigcup_{a \in I} R_{a}=(\operatorname{enf} I, \infty)$ or \mathbb{R} of inf
(3) Enulo intersection $J=\sqrt{x}$

$$
\bigcap_{a \in J} R_{a}=(\max (J), \infty) \quad \text { becenve }|J|<\infty
$$

Ret 2

$$
\begin{aligned}
& X=\mathbb{R}, J=\text { cometadts sets } \mathbb{R} \cup\{/ R\}\} \\
& I=[0,1] \\
& U_{i}=\{i\} \text { al opes } \\
& \bigcup_{i \in I} U_{i}=\bigcup_{i \in I}\{i\}=[0,1] \in J
\end{aligned}
$$

X vith, cerdinalets μ sulsed with cordonalot $<\mu$ do not

62
Castinut a lepatosy witt n open sets. Hinl: Fand are wits n and censwod ae vitf $n+1$

	x	v	
$n=1$	\varnothing	$\tau=\{\phi\}$	x_{0}
$n=2$	$\{p\}$	$\tau=\{\phi, x\}$	x_{1}
$n=3$	$\left\{p_{1}, p_{2}\right\}$		x_{2}
$n=4$	$\left\{p_{1}, p_{2}, p_{3}\right\}$		$0 \cdot$

How at corstinut $X_{\text {und }}$ from X_{1} say $X_{n}=\left\{p_{1}, \ldots, p_{n-1}\right\}$ ($x_{n}=$ iepcolers with n open sett) Let \bar{v}_{n} be 最 tepaless wixt a gen cetf To constiwt X_{n+1} ad J_{n+1}, Let

$$
x_{n+1}=X_{n} \cup\{\#\}
$$

$$
J_{n+1}=J_{n} \cup x_{n+1}
$$

Vhy is the a topalegs
(1) $\varnothing, X_{n+1} \subset \sigma_{n+1}$
(2) Finitu uniens: if \mathscr{x} gnix min inctarbles $X_{\text {un }}$
\Rightarrow unen \& $X_{n+1} \in \bar{U}_{n+1}$
If not inclucten
(3) Simitiong. for fin x intergettex, if
\rightarrow intersection includes X_{n+1} \Rightarrow can remare x_{n+1} intesection. If not, incluetea
as
Lot $x^{7} y \in(x, d)$
Sha, that exits $U_{0 x}, U^{3} y$ st $u \cap v=\varnothing$ and U, v gen

u

$$
\begin{aligned}
& U=B_{x}\left(\frac{t}{3}\right)=B_{\frac{\varepsilon}{3}}(x) \\
& V=B_{y}\left(\frac{s}{3}\right)
\end{aligned}
$$

U, V are lars elemots

$$
(\Rightarrow \text { open })
$$

Only hue of show

$$
\begin{aligned}
& x \in B_{x}\left(\frac{\varepsilon}{3}\right) \quad d(x, x)=0<\frac{\varepsilon}{3} \\
& y \in B_{y}\left(\frac{\varepsilon}{3}\right)
\end{aligned}
$$

$U \cap V=$ impetg. Asseme net, Let $=\in U \cap V$

$$
\begin{gathered}
d(x, z)<\frac{\varepsilon}{3}, d(z, y)<\frac{\varepsilon}{3} \\
\varepsilon<d(x, y) \leqslant d(x=)+d(y, z)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}<\varepsilon \\
=>\text { But y wsinptes } \varepsilon=d(x y) \\
\text { so inposide }
\end{gathered}
$$

Hamder If
$x \neq y$: be able th sepprotos $x y$
ly open seth ly open set,

"Sgproration Condistom"
Itancelerf $\Leftrightarrow \forall x, y \in X, x^{t} y, \exists u v$
st $x=U, y \in V, U, v$ gen $u \cap v=\varnothing$
3(ii)
Pabicales pant not metirables
$x \neq y$, open sos $x \in U, y \in V$
It s not possible that $U \wedge V=\varnothing$?
No $p \in U, p \in V$
$\Rightarrow p \in U \wedge V \Rightarrow$ not Hacseler
\Rightarrow not metrisable

Q 4
Finis stop space
Fut Fin: AD top spare

Sngeltens open
per $p=X$
$\{\rho\}$ is open

$$
\begin{aligned}
& H D \Rightarrow \forall x+x, x \neq p \quad \exists U_{x}, V_{x} \text { st } \\
& p \circ U_{x}, x^{c} V_{x} \text { and } U_{x} \cap V_{x}=\varnothing
\end{aligned}
$$

$$
\widehat{x}_{x} \times U_{x}=\{p\}
$$

$$
|x|<\infty \hat{\jmath}
$$

HW2
al (a) $\overline{(0,1)}=[0,1]$

$$
(0,1) \leqslant \overline{(0,1)}
$$

What we ter lemit poing $x<0 \Rightarrow x$ is not a limet pont

$$
\begin{aligned}
& |x-0|=|x| \\
& \underbrace{\left.\left(x-\frac{|x|}{2}\right) x+\frac{|x|}{2}\right)}_{x \in \text { sa set, st opn }} \cap(0,1)=\varnothing \\
& \underbrace{}_{x \in(0,1)}
\end{aligned}
$$

$x \in S^{\prime} \Leftrightarrow \operatorname{ser}^{\prime} y_{\text {in a a }}$

$$
\begin{aligned}
& \text { every alud } \text { in }_{\text {then }} a x
\end{aligned}
$$

$$
\begin{aligned}
& \delta \in(-\delta, \delta) \quad(\delta>0, \delta<1) \\
& (-\delta, \delta) \cap(0,1)=(0, \delta) \neq \varnothing \\
& \Rightarrow(-\delta, \delta) \text { itarect }(0,1) \text { in a pant } \\
& \text { athe than } 0 \\
& \Rightarrow 0 \in(0,1)^{\prime} \Rightarrow 0 \in \overline{(0,1)} \\
& \Rightarrow\{0,1\}=(0,1)^{\prime} \Rightarrow(0,1)=[0,1]
\end{aligned}
$$

(d) $\overline{\{1,3,5, \ldots\}}$

All clowed ift ith AR in x conplanew xavelass are eithn pild or \mathbb{R} cenclumen
$\Rightarrow\{1,3, \ldots\} \leq\{1,3, \ldots\} \Rightarrow \overline{\{1,3,5,\}}=1 k$

$$
\Rightarrow\{1,3, \ldots\} \leq\{1,3, \ldots\} \Rightarrow \overline{\{1,3,5,\}}=1 k
$$

(6) $\mathbb{K}_{l} \quad[a, b)$ loss elemat fo K_{l} $[a, b) \times[u, d)=\mathbb{R}_{l} \times \mathbb{K}_{l}$
(ab)

(1)

$$
\begin{aligned}
\dot{D} \leq \bar{D}, & \mathscr{D}=\left\{(x y)^{\in} R^{2} \mid x^{2} y^{2}<1\right\} \\
& S^{\prime}=\left\{(x y) \subset R^{2} \mid x^{2}+y^{2}=1\right\} \\
& \dot{D} \cup S^{\prime}=D
\end{aligned}
$$

- $x \notin D \Rightarrow x \notin \overline{\mathrm{D}}$

$$
\begin{aligned}
& x^{2} y^{\prime}>\left(\frac{t}{2}\right)^{2}+\left(\frac{1}{x}\right)^{2}=1 \\
& \Rightarrow(x, y) \notin D^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
x \in\left(-\frac{1}{\sqrt{2}}, 0\right) & \sim x \in(-t, 0) \\
y \in\left(-\frac{1}{\sqrt{2}}, 0\right) \\
x^{2}+y^{2}<1
\end{array}
$$

62 $X, 3$ Hanscaf $\Leftrightarrow \Delta \in X+X$ areel

Do not shew thet $x \times x$ is hausclal show thate x is housdorf

Evingene did thes well evough accendy to Ian
Q3 $|x|: \mathbb{R}_{\mu} \rightarrow \mathbb{R}_{r}$
"
$\int \infty$ not conterias
To show tthe, use defmitres
f its $\Leftrightarrow \forall U \leq / k_{r_{-1}}$ open $f^{-1}(U)$ is open
Find U open st $f^{-1}(U)$ as not open

$$
U=(1, \infty)
$$

Worning D_{0}
\mathbb{R}_{μ} with hass (a, ∞)
琙 ather one $(-\infty, a)$

$$
\begin{aligned}
& f^{-1}((a, \infty)) \\
& =(-\infty,-1) \cup(1, \infty) \\
& =(-\infty,-1) \cup(1, \infty) \quad \text { not a tay in } \\
& g=e^{x}: R_{r} \rightarrow \mathbb{R}_{r} \\
& g^{-1}(a, \infty)=\left\{\begin{array}{l}
\mathbb{R} \text { (tanodogy } a \leq 0 \text { are open! } \\
(h(a, \infty) \\
\end{array} \quad \Rightarrow\right. \text { g dts }
\end{aligned}
$$

64
(s) Ind com tatbes: has countable losis Ist cantable: has cantables nethd

$\forall x \in X, \exists\left\{u_{1}^{*}, u_{2}^{\prime}, \cdots\right.$ st \forall allols U of x $\exists u_{i}^{*} \subset U_{i}$
$x \in \bar{A}, A \subset X, X$ lst aentable

$$
\Rightarrow \exists\left(x_{n}\right)<A \text { st } x_{n} \rightarrow x
$$

$W_{1}=U_{1}, W_{2}=U_{1} \cap U_{2} \quad\left\{U_{i}\right\}_{\text {is }}$ a plad bot's at x

$$
\begin{aligned}
& x_{1} \in W_{1} \cap A \\
& x_{2} \in W_{2} \cap A \\
& x_{3} \in W_{3} \cap A
\end{aligned}
$$

(noels howe)

Tubrives 3

$\omega^{2} \leqslant \mathbb{R}^{2}$
W^{2} comput

$$
\begin{aligned}
& {[0,1] \text { compat }} \\
& {[-1,1] \times \underbrace{[-1,1]} \text { compait }} \\
& \omega^{2} \leqslant I^{2} \pm D^{2} \text { clevel } \\
& W^{2} \text { clesed } \Rightarrow H^{2} \\
& S^{2} H D \\
& S^{2} \in \mathbb{R}^{3} \text { HN }
\end{aligned}
$$

Use pewizal and paler coods

$$
\begin{aligned}
& S^{2}=\left\{(\theta, Q, r) c R^{\top} \mid r=1\right\} \\
& \omega^{2}=\{(\varphi, r)\}
\end{aligned}
$$

Is a gudingt mop

$$
(d, n \pi, r)
$$

$$
\text { a施-wre of } r \neq 1
$$

$$
\begin{aligned}
& (\varphi, r) \stackrel{y}{\longrightarrow}(\varphi, r \sigma, 1) \\
& \text { If } r=1 \\
& \Rightarrow g(C, 1)=(\varphi, \pi, 1) \\
& \text { =sutt pole } \\
& \partial \nu^{2}=S^{\prime} \text { i mgsed } D \text { 生 } \\
& y(Q, r)=g\left(Q^{\prime}, n^{\prime}\right) \\
& \Rightarrow Q=Q^{\prime}, r=r^{\prime}
\end{aligned}
$$

The filues of p we eittor

- (n, Q) $n<1$
- ar $s^{\prime}=\{r=1\}$
y λ corstent on Gilues
\Rightarrow indous map b
D^{2} cempact $S^{2} \mathrm{H} \mathrm{H}$
$y: \nu^{2} \longrightarrow S^{2}$ it a closel mgs
\Rightarrow g it a quatiant mup
\Rightarrow f λ a suabiedt nus
of injerdver \Rightarrow (4)

$$
\begin{aligned}
& f([r])=f\left(\left[r^{\prime}\right]\right) \\
& \Rightarrow[r]=\left[r^{\prime}\right]
\end{aligned}
$$

HW 4
(1) Deleced vuy teproters

$$
J=\left\{(-\infty, u) \backslash U \left\lvert\, K=\left\{\left.-\frac{1}{n} \right\rvert\, n \in N\right\}\right.\right.
$$

To shen: cemecturs
Sospue
$\mathbb{R}=U \cdot V$, a sequatue
Then $U=(-\infty, a) \cdot U$

$$
V=(-\infty, 6) \backslash K
$$

$$
u
$$

 a sepratues

C2 Opres comecterd subseb of \mathbb{R}^{2} it
pats connecterd
Let $x_{0} \in U$ oper, comrectex

$$
C\left(x_{0}\right)=\left\{x \in U \mid \exists \text { patb } y \text { fram } x_{0} \text { a } x\right\}
$$

Shen Whab $C\left(x_{0}\right)$ is batb one

(1) $C(x)$ is open

Lef $x^{\in} C\left(x_{0}\right)$. To shew Mfers existe some oper set $x \in V \leq C\left(x_{0}\right)$

Sind Pate patt $x_{0} \rightarrow x$ and oxt patt $x \rightarrow y$ an be concatensalter Whard eaists a part from $x_{0} \rightarrow y$ tex $\begin{aligned} y & \in C\left(x_{0}\right) \Rightarrow B\left(x, \varepsilon_{0}\right) \leq C\left(x_{0}\right) \\ & \Rightarrow C(x)\end{aligned}$ $\Rightarrow C\left(x_{0}\right)$ is open
$C\left(x_{0}\right)$ clered
Pill a pont $z^{\in}\left(\left(x_{0}\right)^{c}\right.$. Consider on gren ball contereds at z, sun $B\left(z, \varepsilon_{2}\right)$. To show $B\left(z, \varepsilon_{2}\right) \in C\left(x_{0}\right)^{c}$. If a point $w \in B\left(\varepsilon_{2}, \varepsilon_{2}\right)$ then serd unst a pates fron x_{0} to w and ly incalenata tens

$$
\begin{aligned}
& \text { fram wh } x \text { a we get a pales } \\
& x_{0} \in C\left(x_{0}\right) \\
& \Rightarrow C\left(x_{0}\right) \neq \varnothing
\end{aligned}
$$

$\Rightarrow C\left(x_{0}\right)$ is nan emplta oren and cloveel so
$U=C(-t) \cup C(t)^{C}$ is a szoraxies unloss $C\left(x_{0}\right)=U$
\Rightarrow As U is comected, $U=C\left(x_{0}\right)$
$63[0,1],(0,1],(0,1)$ are all distunct toriologicalh
$f: X \rightarrow Y, z \leqslant X$ is a homemoryphism then $f: X, Z \longrightarrow Y$ a a homeemaxphism alco apply D

$$
X=[0,1], z=\{0\}
$$

$$
\begin{aligned}
& {[0,1] \stackrel{6}{\approx}>(0,1)} \\
& z=\{0\} \\
& \Rightarrow(0,1] \longrightarrow(0,1)-f(0) \\
& \hat{\imath}_{\text {comectorn }} \imath_{\text {cannod de }} \\
& (0, f(0)) \cup(f(0), 1) \\
& \text { cmecteed }
\end{aligned}
$$

is a symator
Centracticties senid gon cont have a homeemorphim frem a conrecterts set DA a discmeelecd sef

$$
\begin{aligned}
\Rightarrow & {[0,1] \not f(0,1) } \\
z & =\{0,1\} \\
& \Rightarrow[9,1] \neq[0,1]
\end{aligned}
$$

$$
\begin{gathered}
(0,1) \neq(0,1) \\
z=\{1\}
\end{gathered}
$$

64
simple onde $("<") \quad(\underline{10 T} " \leq ")$ is a lines continiemm
(1) y By st $x<y<z$
(2) A bounded \Rightarrow A has lub

Show : canneiteal simple arder is cutisium

Let X he cumecters We wand at shem
under a lire centeriven
(1) Synase $x^{c} z$ lint exd eate no y

$$
\begin{aligned}
& \text { st } x<y<z \\
& \Rightarrow X=(-\infty, z) \cup(x, \infty)
\end{aligned}
$$

(whil -D dentt, ex min of x

(2) To shon lout yzpe lourls exasts

